

MINISTRY OF ELECTRICITY & WATER

Transmission Electrical Network Sector Primary Substation Maintenance Department Transformers Section

A Study Report of Transformer no. (1) 300 MVA located in ALAHMADI "W" MVA

Abstract:

Transformer no. (1) Of 300MVA located in ALAHMADI "W" is one from the important "26" electrical transformer which is connected to the DGA analyzer in the electrical grid. DGA analyzer triggers a caution alarm in the software, if some of the dissolved gases reached the caution limit in the transformer.

According to the figure (1), there was no concern in the transformer from 6th.October 2020 to approximately 24th.October 2020 in the light green zone. Then it jumped to the yellow zone from 25th.October, 2020. After 28th.October 2020 there was a significant decrease in the transformer index (3) in the yellow zone to transformer index (2) in the light green zone. Therefore, it was stable during the study period from 29th.July 2020 to 1st November 2020. After that it jumped again to the yellow zone during the last study period. This reports will demonstrate all the increase rates reasons of the dissolved gases in the electrical transformer during the study period (5/9/2020-5/11/2020).



Figure (1): Risk index of the transformer under study

Overall DGA Analysis

Value

Value

Value

Value

A nine weeks of the dissolved gases data were analyzed and collected from the DGA analyzer under the study period (5/9/2020-5/11/2020). The data was calculated by the average calculation for each gas for the nine weeks as indicated in table no (1). Basically, if one of the dissolved gases are in the acceptable limits, the DGA analyzer will test the transformer automatically every eight hours and the rate of the sampling will change into every two hours, if the one of the dissolved gases reached the caution limit.

Value

	Week1	Week2	Week3	Week4	Week5	Week6	Week7	Week8	Week9	expected value	unit	L	CL
										week10			
\mathbf{H}_2	48.55	50.50	48.40	51.54	50.19	46.81	46.30	47.12	49.75	174.1	ppm	<50	>150
O_2	59.95	63.26	59.40	67.61	73.60	80.49	81.93	87.96	93.97	328.9	ppm		
CO ₂	2235	2231.2	2219.1	2239.9	2235.9	2196	2164.4	2139	2122.4	7428.6	ppm	<3800	>14000
CO	85.90	85.82	85.97	85.70	86.03	86.17	85.72	85.70	85.29	298.5	ppm	<400	>600
C ₂ H ₂	0.163	0.089	0.08	0.06	0.19	0.08	0.11	0.19	0.11	0.39	ppm	<2	>20
C ₂ H ₄	6.63	6.63	6.47	6.46	6.66	6.30	6.30	6.12	6.22	21.7	ppm	<60	>280
C ₂ H ₆	221.03	220.85	222.18	221.42	218.59	223.70	220.1	216.2	217.18	760	ppm	<20	>90
CH ₄	44.04	44.28	44.45	44.8	43.78	45.16	45.35	44.45	44.58	156	ppm	<30	>130
H ₂ O	4.55	4.23	4.07	4.72	4.22	3.3	3.02	2.70	2.55	3.7	ppm	<20	>30

Value

Table (1): Transformer (1) Weekly Data Collected from DGA Analyzer

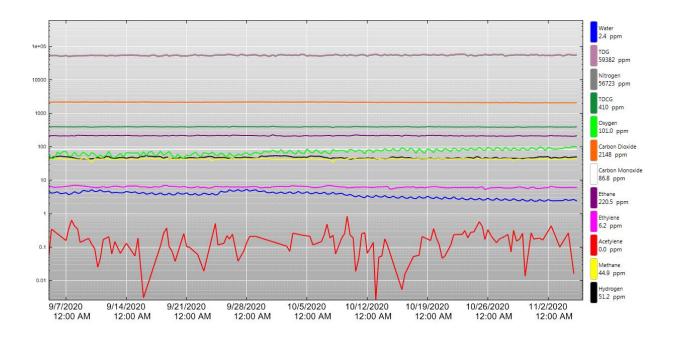


Figure (2): DGA Trend Chart

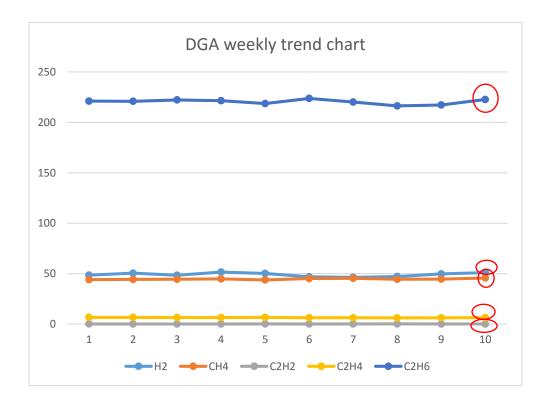


Figure (3): DGA weekly trend chart (key gases)

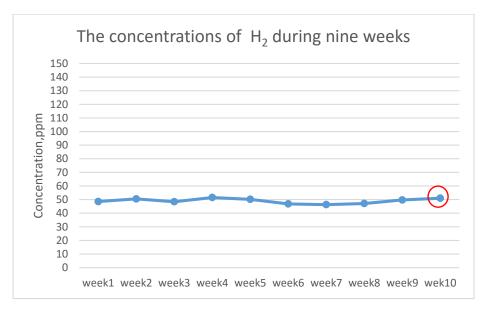


Figure (4): H₂ concentrations

The graph above shows the behavior of Hydrogen gas H_2 during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the expected average value for week 10.

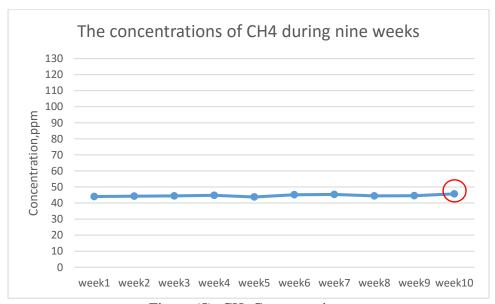


Figure (5): CH₄ Concentrations

The graph above shows the behavior of methane gas CH₄ during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the expected average value for week 10.

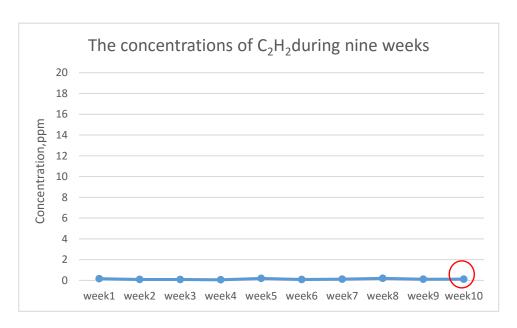


Figure (6): C₂H₂ Concentrations

The graph above shows the behavior of acetylene gas C_2H_2 during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the expected average value for week 10.

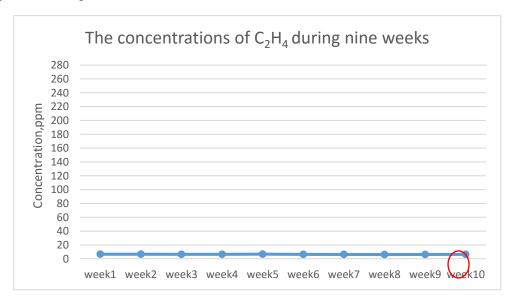


Figure (7): C₂H₄ Concentrations

The graph above shows the behavior of ethylene gas C₂H₄ during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the expected average value for week 10.

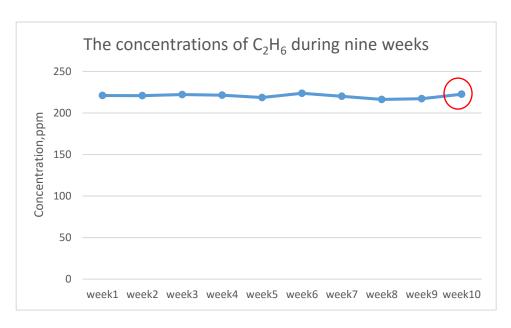


Figure (8): C₂H₆ Concentrations

The graph above shows the behavior of ethane gas C_2H_6 during nine weeks. It reached the caution limit during the whole study period (5/9/2020-5/11/2020) .However, there was a light increase from week5 to week6 (1.27%). The red circle indicates the expected average value for week 10.

Figure (9): Duval triangle

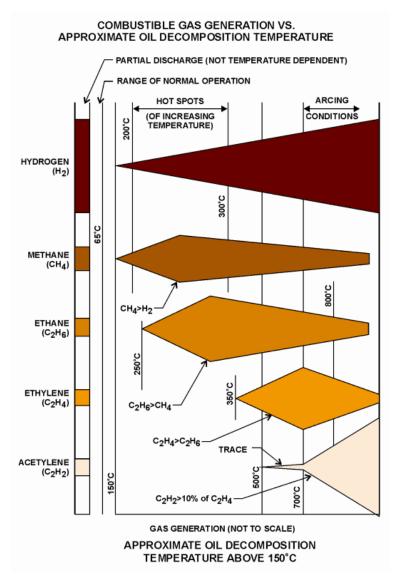


Figure (10): Gas generation chart: Combustible Gas Generation vs. oil Decomposition temperature

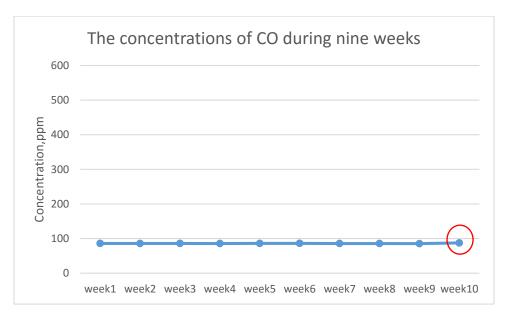


Figure (11): The concentrations of CO

The graph above shows the behavior of carbon monoxide gas CO during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the expected average value for week 10.

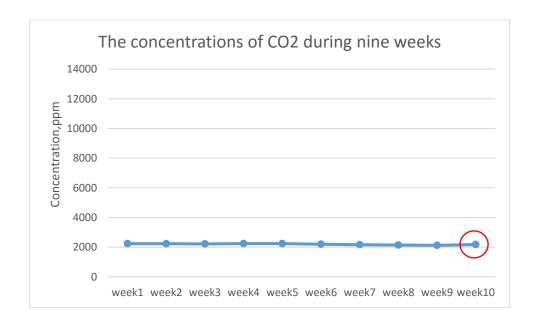


Figure (12): The concentrations of CO₂

The graph above shows the behavior of carbon dioxide gas CO_2 during nine weeks. It did not reach the caution limit during the study period (5/9/2020-5/11/2020). The red circle indicates the average value expected for week10.



Figure (13): The concentrations of O₂

The graph above shows the behavior of Oxygen gas O_2 during nine weeks. There was a significant increase in gas concentrations of O_2 from week3 to week9. This increase due to leakage. The red circle indicates the expected average value for week 10.

Paper condition

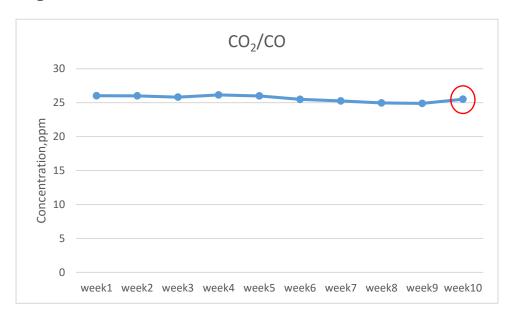


Figure (14): CO₂/CO

The graph above shows the paper condition. There was a very slight decrease from week 5 to week6 then it was constant again during the rest of the study period. The red circle indicates the expected average value for week 10.

Figure (15): Paper condition chart

Water content

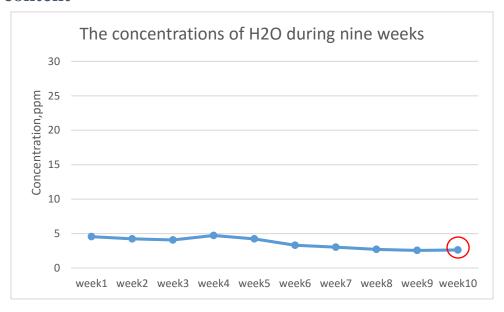


Figure (16): The concentrations of H₂O

The graph above shows the behavior of water H_2O (water content) during nine weeks. It did not reach the caution limit during the study period. However, the water concentration decreased significantly from week4 to the end of the study period. The red circle indicates the expected average value for week 10.

Evaluation

After analyzing the data, there was no concern with all dissolved gases such as Hydrogen H₂, methane gas CH₄, acetylene gas C₂H₂, ethylene C₂H₄ and ethane gas C₂H₆ gas. Nevertheless, Duval triangle in figure (9) is not applied to this case study and also the gas generation chart in figure (10) is also not applied because there was no significant increase with the dissolved gases for all gases but it is applied to the C₂H₆ gas because it reached the caution limit as it shown above in figure (8). This will lead to the thermal stress (overheating inside the transformer). Moreover, there was no concern with carbon monoxide and carbon dioxide (CO& CO₂) as they did not reach the caution limit during the study period. However, the gas concentration of CO₂/CO was not within the range (3-10), it was above 10 and the increase of CO₂/CO was too high. Therefore, there was concern with the paper condition. This will lead to the degradation of insulating paper. There was a significant increase of O₂ gas during study period especially from week 3. This due to leakage in the transformer. The gas concentrations of H₂O did not reach the caution limit. However, there was a significant decrease of H₂O during study period (5/9/2020-5/11/2020) because of the winter season (low temperature).

Recommendation

Continue taking new sample for DGA
Thermal paper degradation

Done by Eng. ASRAR ALMAHBOUB,
Supervised by Eng. SUAAD ALMUTAIRI

11.11.2020