

CHAPTER 7: DECISION THEORY

MARY GRACE ROLDAN

3MKTG02

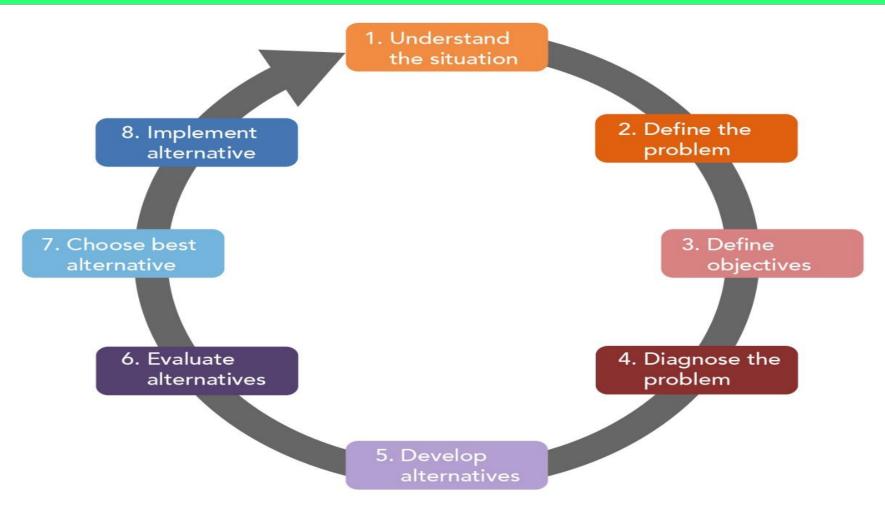
OUTLINE

- ▼ The Decision Process and Causes of Poor Decisions
- ✓ Decision Environments
- ✓ Decision Making Under Certainty
- ✓ Decision Making Under Uncertainty
- ✓ Decision Making Under Risk
- ✓ Decision Trees
- Expected Value of Perfect Information
- ✓ Sensitivity Analysis

LEARNING OBJECTIVES

When you complete this chapter, you should be able to:

- **☑** Outline the steps in Decision Making
- **☑** Name some causes of poor decisions
- ☑ Describe the techniques that apply to decision making under certainty and uncertainty
- ☑ Construct a decision tree and use it to analyze a problem
- **☑** Compute the expected value of perfect information
- ☑ Conduct sensitivity analysis on a simple decision problem


DECISION THEORY

- A process of selecting an act out of several available alternative courses of action judged to be the best action according to some predetermined criteria.
- The main aim of decision theory is to help the decision-maker in selecting best course of action from amongst the available course of action.

THE STEPS IN DECISION MAKING

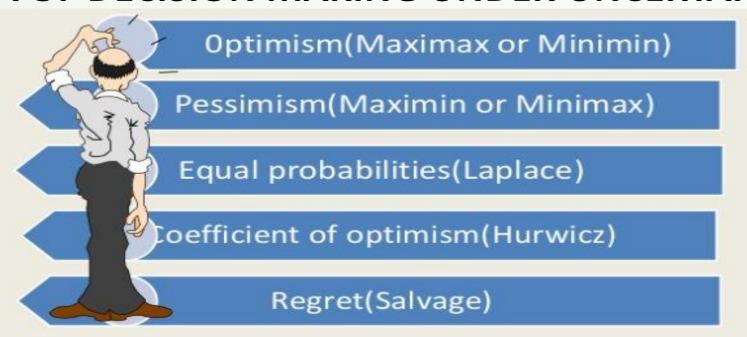
CAUSES OF SOME POOR DECISIONS

CAUSES OF SOME POOR DECISIONS

- Waiting too long for others' input.
- Failing to get the right input at the right time.
- Failing to understand input because of insufficient skills.
- Failing to understand when something that worked in the past will not work now.
- Failing to know when to make a decision without all the right information and when to wait for more advice.

DECISION ENVIRONMENTS

- DECISION MAKING UNDER UNCERTAINTY
- ✓ Complete uncertainty as to which state of nature may occur
- DECISION MAKING UNDER RISK
- √ Several states of nature may occur
- ✓ Each has a probability of occurring
- DECISION MAKING UNDER CERTAINTY
- ✓ State of nature is known



- Environment in which relevant parameters have known values
- Typical for structured problem with short time horizon
- There is only one time of event that can take place
- Its very difficult to find complete certainty in most of the business decisions
- In many routine type of decision, almost complete certainty can be noticed.
- In uncertainty the decision are of very little significance to the success of business

- Cannot list all possible outcomes
- Cannot assign probabilities to the outcomes
- **CRITERIA OF DECISION MAKING UNDER UNCERTAITY**

> OPTIMISM (MAXIMAX OR MINIMIN CRITERION)

- Choose the alternative with the best possible payoff
- Locate the maximum or minimum payoff values corresponding to each alternatives
- The maximax s 7000, hence the company should adopt strategy S1

		States o	of nature	ROW
Strategies	N1	N2	N3	MAXIMUM
S1	7000	3000	1500	7000
S2	5000	4500	0	5000
S3	3000	3000	3000	3000

> PESSIMISM (MAXIMIN OR MINIMAX CRITERION)

- Choose the alternative with the best of the worst possible payoffs
- Locate the minimum payoff values corresponding to each alternatives

The act/decision with higher minimum value is 3000, hence the company should

adopt S3

	v.	States o	Row Minimum	
Strategies	N1	N2	N3	
S1	7000	3000	1500	3000
S2	5000	4500	0	0
S3	3000	3000	3000	3000

> LAPLACE CRITERION (EQUAL PROBABILITIES)

- Under this assumption, all states of nature are equally likely.
- Decision maker can compute the average payoff for each row (the sum of the
 possible consequences of each alternative is divided by the number of states of
 nature) and then, select the alternative that has the highest row average.

Strategies	N1	States of n N2	ature N3	ROW MAXIMUM
S1	7000	3000	1500	3,833.33
S2	5000	4500	0	3166.66
S3	3000	3000	3000	3000

The largest expected return is from Strategy S1, THE EXECUTIVE MUST SELECT S1

COEFFICIENT OF OPTIMISM (HURWICZ)

- This criterion represents a compromise between the optimistic and the pessimistic approach to decision making under uncertainty.
- For each alternative select the largest and lowest payoff values and multiply these with α and (1- α) values respectively.
- Then calculate the weighted average using the formula:

H Coefficient of optimism =

 α (maximum in column)+(1+ α)(minimum in column)

Select the best answer.

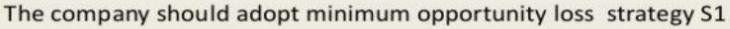
Strategy	Maximum pay-off	Minimum pay-off	
S1	7000	1500	4800
S2	5000	0	3000
S3	3000	3000	3000

Assuming degree of optimisim $\alpha = 0.6$ and $(1-\alpha)=0.4$ H Coefficient of optimism = α (maximum in column) + $(1-\alpha)$ (minimum in column)

The maximum value is 4800, adopt S1

❖ REGRET(SALVAGE RULE)

- This rule represents a pessimistic approach.
- The opportunity loss reflects the difference between each payoff and the best possible payoff in a column (it can be defined as the amount of profit forgone by not choosing the best alternative for each state of nature).
- For each course of action identify the maximum regret value, record this no in a row
- Select the course of action with Smallest anticipated opportunity loss value



Strategies		States of nature					
		N1		N2		N3	
S1		7000		3000)	1500	
S2		5000		4500)	0	
S3		3000		3000)	3000	
Column ma	x	7000		4500)	3000	101
Strategies	N1		N2		N3		
S1	7000 - = 0	7000	4500-300 1500	0=	3000-1500=	1500	1500
S2	7000- = 2000		4500-450	0=0	3000-0=300	0	3000
S3	7000-3 4000	3000 =	4500-300 1500	00=	3000-3000=	0	4000

Col max

7000

3000

4500

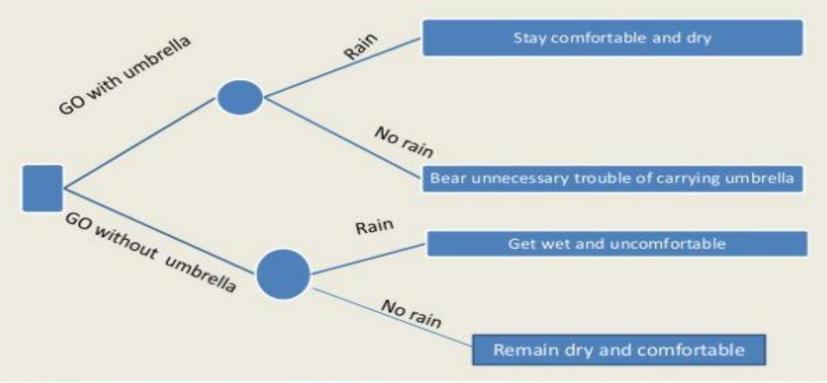
DECISION MAKING UNDER RISK

- Must make a decision for which the outcome is not known with certainty
- Can list all possible outcomes & assign probabilities to the outcomes

DECISION TREES

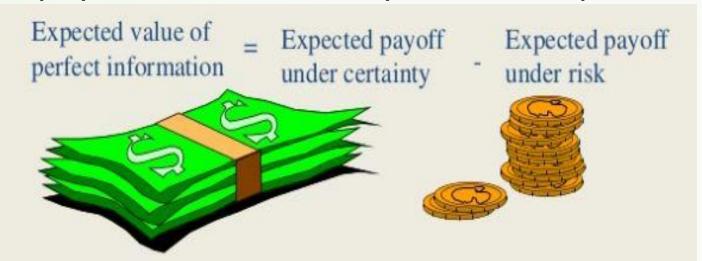
- Decision tree is a network which exhibits graphically the relationship between the different parts of the complex decision process.
- It is a graphical model of each combination of various acts and states of nature along with their payoffs, probability decision
- It is extremely useful in multistage situations, which involve a number of decisions, each depending on the preceding one.
- A decision tree analysis involves the construction of diagram that shows, at a glance, when decisions are expected to be made-in what sequence, their possible outcomes & corresponding payoffs.

DECISION TREES


- A DT consists of nodes, branches, probability estimates and payoffs
- Three types of "nodes"
- -Decision nodes-represented by squares (■) It represents a point of action where a decision maker must select one alternative course of action among the available
- -Chance nodes- represented by circles () it indicates a point of time where the decision maker will discover the response to his decision
- -terminal nodes- represented by triangles (optional)
- Solving the tree involves pruning all but the best decisions at decision nodes, and finding expected values of all possible states of nature at chance nodes
- Create the tree from left to right
- Solve the tree from right to left

DECISION TREES

Decision tree example



EXPECTED VALUE OF PERFECT INFORMATION

EXPECTED VALUE OF PERFECT INFORMATION: The difference

between the expected payoff under certainty and the expected

payoff under risk

EVPI is defined as the maximum amount one would pay to obtain perfect information about the state of nature that would occur

SENSITIVITY ANALYSIS

- <u>Sensitivity analysis</u> is a management tool that helps in determining how different values of an independent variable can affect a particular dependent variable
- As sensitivity analysis studies each variable independently, it can identify critical variables that may act as a weakness.
- Through sensitivity analysis, the management can know which variables have a high impact on success or failure of a project.

SENSITIVITY ANALYSIS

Advantages of Sensitivity Analysis

Disadvantages of Sensitivity Analysis

- In-depth analysis
- Helps strengthen "weak spots"
- Helps in decision making
- Helps in quality check
- Helps in the proper allocation of resources

- Based on assumptions
- It is not relative in nature

Thank You!

